Part Number Hot Search : 
F0134M5 5MTRF B65812 VHCT125A DS18B200 CMS5D28 P5KE65A MSK4362U
Product Description
Full Text Search
 

To Download TL061MN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TL061
Low power JFET single operational amplifiers
Features

Very low power consumption: 200 A Wide common-mode (up to VCC+) and differential voltage ranges Low input bias and offset currents Output short-circuit protection High input impedance JFET input stage Internal frequency compensation Latch-up free operation High slew rate : 3.5V/s D SO-8 (Plastic micropackage) N DIP8 (Plastic package)
Description
The TL061, TL061A and TL061B are high-speed JFET input single operational amplifiers. Each of these JFET input operational amplifiers incorporates well matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.
Pin connections (top view)
1 2 3 4
1 - Offset null 1 2 - Inverting input 3 - Non-inverting input 4 - VCC5 - Offset null 2 6 - Output 7 - VCC+ 8 - N.C.
8 7 6 5
July 2007
Rev 2
1/14
www.st.com 14
Schematic diagram
TL061-TL061A-TL061B
1
Figure 1.
Schematic diagram
Schematic diagram
VCC
220 Inverting Input Non-inverting Input 45k 270 3.2k
64
Output
4.2k
100
VCC
Offset Null 1 Offset Null 2
Figure 2.
Input offset voltage null circuit
TL061
N1
N2 100k V CC
2/14
TL061-TL061A-TL061B
Absolute maximum ratings and operating conditions
2
Table 1.
Symbol VCC Vi Vid Ptot
Absolute maximum ratings and operating conditions
Absolute maximum ratings
Value Parameter TL061M, AM, BM TL061I, AI, BI Supply voltage (1) Input voltage
(2)
Unit TL061C, AC, BC V V V mW 18 15 30 680
(4)
Differential input voltage(3) Power dissipation Output short-circuit duration
Infinite -65 to +150 -65 to +150 -65 to +150 C
Tstg
Storage temperature range Thermal resistance junction to ambient(5) (6) SO-8 DIP8 Thermal resistance junction to case(5) (6) SO-8 DIP8 HBM: human body model(7)
Rthja
125 85
C/W
Rthjc
40 41 800 200 1.5
C/W
V V kV
ESD
MM: machine model
(8)
CDM: charged device
model(9)
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC+ and VCC-. 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100pF discharged through a 1.5k resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
Table 2.
Symbol VCC Toper
Operating conditions
Parameter Supply voltage range Operating free-air temperature range -55 to +125 TL061M, AM, BM TL061I, AI, BI 6 to 36 -40 to +105 0 to +70 TL061C, AC, BC Unit V C
3/14
Electrical characteristics
TL061-TL061A-TL061B
3
Table 3.
Symbol
Electrical characteristics
VCC = 15V, Tamb = +25C (unless otherwise specified)
TL061M Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Input offset voltage (RS = 50) Tamb = +25C Tmin Tamb Tmax Temperature coefficient of input offset voltage (RS = 50) Input offset current (1) Tamb = +25C Tmin Tamb Tmax Input bias current (1) Tamb = +25C Tmin Tamb Tmax Input common mode voltage range Output voltage swing (RL = 10k) Tamb = +25C Tmin Tamb Tmax Large signal voltage gain , RL = 10k Vo = 10V, Tamb = +25C Tmin Tamb Tmax Gain bandwidth product Tamb= +25C, RL=10k CL=100pF , Input resistance Common mode rejection ratio RS = 50 Supply voltage rejection ratio RS = 50 Supply current, no load Tamb = +25C, no load, no signal Total power consumption Tamb = +25C, no load, no signal Slew rate Vi= 10V, RL= 10k CL= 100pF, Av=1 , Rise time , Vi= 20mV, RL=10k CL=100pF, Av=1 1.5 80 80
11.5
TL061I
TL061C Unit
Vio
3
6 9
3
6 9
3
15 20
mV
DVio
10
10
10
V/C
Iio
5
100 20 200 20 11.5
5
100 10 200 20 11
5
200 5 400 10
pA nA pA nA V
Iib
30 +15 -12 27
30 +15 -12 27
30 +15 -12 27
Vicm
Vopp
20 20
20 20
20 20
V
Avd
4 4
6
4 4
6
3 3
6
V/mV
GBP Ri CMR SVR ICC PD SR tr
1 1012 86 95 200 6 3.5 0.2 250 7.5 1.5 80 80
1 1012 86 95 200 6 3.5 0.2 250 7.5 1.5 70 70
1 1012 76 95 200 6 3.5 0.2 250 7.5
MHz dB dB A mW V/s s
4/14
TL061-TL061A-TL061B Table 3.
Symbol
Electrical characteristics
VCC = 15V, Tamb = +25C (unless otherwise specified) (continued)
TL061M Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Overshoot factor (see Figure 16) , Vi= 20mV, RL= 10k CL=100pF, Av=1 Equivalent input noise voltage RS = 100, f = 1kHz TL061I TL061C Unit
Kov
10
10
10
%
nV ----------Hz
en
42
42
42
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive.Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
Table 4.
Symbol
VCC = 15V, Tamb = +25C (unless otherwise specified)
TL061AC, AI, AM Parameter Min. Input offset voltage (RS = 50) Tamb = +25C Tmin Tamb Tmax Temperature coefficient of input offset voltage (RS = 50) Input offset current (1) Tamb = +25C Tmin Tamb Tmax Input bias current (1) Tamb = +25C Tmin Tamb Tmax Input common mode voltage range Output voltage swing (RL = 10k) Tamb = +25C Tmin Tamb Tmax Large signal voltage gain (RL = 10k Vo = 10V) , Tamb = +25C Tmin Tamb Tmax Gain bandwidth product , Tamb = +25C, RL =10k CL = 100pF Input resistance Common mode rejection ratio (RS = 50) Supply voltage rejection ratio (RS = 50) Supply current, no load Tamb = +25C, no load, no signal Total power consumption Tamb = +25C, no load, no signal 80 80 11.5 Typ. Max. Min. Typ. Max. TL061BC, BI, BM Unit
Vio
3
6 7.5
2
3 5
mV
DVio
10
10
V/C
Iio
5
100 3 200 7 11
5
100 3 200 7
pA nA pA nA V
Iib
30 +15 -12 27
30 +15 -12 27
Vicm
Vopp
20 20 4 4
20 20 4 4
V
Avd
6
6
V/mV
GBP Ri CMR SVR ICC PD
1 1012 86 95 200 250 80 80
1 1012 86 95 200 250
MHz dB dB A
6
7.5
6
7.5
mW
5/14
Electrical characteristics Table 4.
Symbol
TL061-TL061A-TL061B
VCC = 15V, Tamb = +25C (unless otherwise specified) (continued)
TL061AC, AI, AM Parameter Min. Typ. 3.5 0.2 10 42 Max. Min. 1.5 Typ. 3.5 0.2 10 42 Max. V/s s %
nV ----------Hz
TL061BC, BI, BM Unit
SR tr Kov en
Slew rate Vi = 10V, RL = 10k CL = 100pF, Av = 1 , Rise time , Vi = 20mV, RL = 10k CL = 100pF, Av = 1 Overshoot factor (see Figure 16) , Vi = 20mV, RL = 10k CL = 100pF, Av = 1 Equivalent input noise voltage RS = 100, f = 1KHz
1.5
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive.Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible
6/14
TL061-TL061A-TL061B
Electrical characteristics
Figure 3.
Maximum peak-to-peak output voltage versus supply voltage
Figure 4.
Maximum peak-to-peak output voltage versus free air temperature
Figure 5.
Maximum peak-to-peak output voltage versus load resistance
Figure 6.
Maximum peak-to-peak output voltage versus frequency
Figure 7.
Differential voltage amplification versus free air temperature
Figure 8.
Large signal differential voltage amplification and phase shift versus frequency
7/14
Electrical characteristics
TL061-TL061A-TL061B
Figure 9.
Supply current per amplifier versus Figure 10. Supply current per amplifier versus supply voltag free air temperature
250
SUPPLY CURRENT (A)
250
SUPPLY CURRENT (A)
200
150 100 50
T amb = +25C No signal No load
200
150 100 50 VCC = 15V No signal No load -75 -50 -25 0 50 75 100 125 25 FREE AIR TEMPERATURE (C)
0
0 2 4 10 12 6 8 SUPPLY VOLTAGE ( V) 14
0 16
Figure 11. Total power dissipated versus free air temperature
30 TOTAL POWER DISSIPATED (mW) 25 20 15 10 5 0 -75 -50 -25 0 25 50 75 100 125 FREE AIR TEMPERATURE (C)
V C C = 15V No signal No load
Figure 12. Common mode rejection ratio versus free air temperature
87 COMMON MODE REJECTION RATIO (dB) 86 85 84 83 82 81 -75
V C C = 1 5V R L = 10k
-50
-25
0
25
50
75
100
125
FREE AIR TEMPERATURE (C)
Figure 13. Normalized unity gain bandwidth slew rate, and phase shift versus temperature
NORMALIZED UNITY-GAIN BANDWIDTH AND SLEW RATE
Figure 14. Input bias current versus free air temperature
100
1.2 1.1
UNITY -GAIN-BANDWIDTH (left scale) PHASE SH IFT (right scale)
1.02 1.01
INPUT BIAS CURRENT (nA)
1.3
1.03
VCC = 10
1 0.1
15V
NORMALIZED PHASE SHIFT
1 0.9
0.8
VCC = 15V R L = 10k f = B 1for phase shift
SLEW RAT E (left scale)
1 0.99
0.98
0.7 -75 -50
-25
0
25
50
0.97 75 100 125
FREE AIR TEMPERATURE (C)
0.01 -50
-25
0
25
50
75
100
125
FREE AIR TEMPERATURE (C)
8/14
TL061-TL061A-TL061B
Electrical characteristics
Figure 15. Voltage follower large signal pulse response
INPUT AND OUTPUT VOLTAGES (V) 6
Figure 16. Output voltage versus elapsed time
28
INPUT
OUTPUT VOLTAGE (mV)
4
24
OVERSHOOT
20 16 12 8 4
10%
90%
2
0 -2 -4 -6 0 2 4 6 TIME (s)
VCC = 15V R L = 10k CL = 100pF
OUTPUT
V CC = 15V tr 0 0.2 0.4 0.6 0.8 TIME ( s) R L = 10k Tamb = +25C 1 12 14
Tamb = +25C
0 -4
8
10
Figure 17. Equivalent input noise voltage versus frequency
100 EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) 90 80 70 60 50 40 30 20 10 0 40 10 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz)
VC C = 15V R S = 100 T a m b = +25 C
Parameter measurement information
Figure 18. Voltage follower Figure 19. Gain-of-10 inverting amplifier
10k 1k
eI
-
TL061
eo
RL
CL = 100pF
9/14
Package information
TL061-TL061A-TL061B
4
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
10/14
TL061-TL061A-TL061B Figure 20. DIP8 package mechanical data
Dimensions Ref. Min. A A1 A2 b b2 c D E E1 e eA eB L 2.92 3.30 0.38 2.92 0.36 1.14 0.20 9.02 7.62 6.10 3.30 0.46 1.52 0.25 9.27 7.87 6.35 2.54 7.62 10.92 3.81 0.115 4.95 0.56 1.78 0.36 10.16 8.26 7.11 Millimeters Typ. Max. 5.33 0.015 0.115 0.014 0.045 0.008 0.355 0.300 0.240 Min.
Package information
Inches Typ. Max. 0.210
0.130 0.018 0.060 0.010 0.365 0.310 0.250 0.100 0.300
0.195 0.022 0.070 0.014 0.400 0.325 0.280
0.430 0.130 0.150
11/14
Package information Figure 21. SO-8 package mechanical data
Dimensions Ref. Min. A A1 A2 b c D H E1 e h L k ccc 0.25 0.40 1 0.10 1.25 0.28 0.17 4.80 5.80 3.80 4.90 6.00 3.90 1.27 0.50 1.27 8 0.10 0.010 0.016 1 0.48 0.23 5.00 6.20 4.00 Millimeters Typ. Max. 1.75 0.25 0.004 0.049 0.011 0.007 0.189 0.228 0.150 Min.
TL061-TL061A-TL061B
Inches Typ. Max. 0.069 0.010
0.019 0.010 0.193 0.236 0.154 0.050 0.020 0.050 8 0.004 0.197 0.244 0.157
12/14
TL061-TL061A-TL061B
Ordering information
5
Ordering information
Table 5. Order codes
Temperature range Package Packing Marking TL061MN TL061AMN TL061BMN 061M 061AM 061BM TL061IN TL061AIN TL061BIN 061I 061AI 061BI TL061CN TL061ACN TL061BCN 061C 061AC 061BC
Part number TL061MN TL061AMN TL061BMN
DIP8 -55C, +125C
Tube
TL061MD/MDT TL061AMD/AMDT TL061BMD/BMDT TL061IN TL061AIN TL061BIN -40C, +105C TL061ID/IDT TL061AID/AIDT TL061BID/BIDT TL061CN TL061ACN TL061BCN 0C, +70C TL061CD/CDT TL061ACD/ACDT TL061BCD/BCDT
SO-8
Tube or tape & reel
DIP8
Tube
SO-8
Tube or tape & reel
DIP8
Tube
SO-8
Tube or tape & reel
6
Revision history
Table 6.
Date 13-Nov-2001
Document revision history
Revision 1 Initial release. Added values for Rthja and Rthjc in Table 1: Absolute maximum ratings. Added Table 2: Operating conditions. Updated format. Changes
27-Jul-2007
2
13/14
TL061-TL061A-TL061B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
14/14


▲Up To Search▲   

 
Price & Availability of TL061MN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X